

WORK ENERGY AND POWER

WORK

0

• Definition: work is the product of the displacement and the component of the force applied parallel to the motion of the object

$W = F \Delta x \cos \theta$

- W = work measured in joule(J)
- F= force parallel to direction of motion in Newton
- $\Delta x = displacement in meters(only magnitude)$
- Cos θ= angle between the applied force and motion of object

Conditions for work done

- 1. there must be an applied force
- 2. the objects displacement must be in the direction of the component of the applied force

WORK

• POSITIVE WORK: the motion is in the same direction as the applied force. Kinetic energy increases. Velocity increase Cos 0

• NEGATIVE WORK: work done by an opposing force. Decrease in kinetic energy. Velocity decrease Cos 180

CALCULATING WORK DONE

- Calculate the work done by the
- 1. applied force
- 2. Friction force
- 3. Nett force

WORK/ENERGY THEOREM

 WORK done increase / decrease the kinetic energy

$\circ W_{net} = \Delta E_k$ Work/energy theorem

$$\bullet$$
 W_{net} = E_{kf} - E_{ki}

• Def: The net work done on an object is equal to the change in kinetic energy of the object. A 2 000 kg car moving at 50 m·s⁻¹ on a horizontal road is brought to a halt over a distance of 100 m when the brakes are applied.

- (1) Calculate the average frictional force applied by the brakes to bring the car to a halt.
- (2) If the same car has travelled at twice the velocity, thus 100 m·s⁻¹, what will the distance then be? Give an answer without doing a complete calculation.

- 4. A trolley with a mass of 3 kg slides down an incline. The incline is 1 m in length and forms an angle of 30° to the horizontal, as shown. The trolley begins to move from rest at the top of the incline and undergoes a constant frictional force with a magnitude of 5 N.
 - 4.1 Calculate the magnitude of the net force that is acting on the trolley parallel to the incline.

4.2 Use the work-energy theorem and calculate the st of the trolley when it reaches the bottom of the ind

Conservative and non-conservative forces

- Conservative: the net work done by the force to move the object that start and end at the same point = 0
- Conservative: work done is determined by starting point and end position
- Non-conservative: the net work done by the force to move the object that starts and end at the same point is not 0.
- Non- conservative: work done depends on the path taken

Conservative forces F _{c non} wastefull/ internal forces	Non- conservative forces F _{nc wastefull/ external forces}
Gravitational force Electrical power Elastic resillience	Frictional force Air resistance Tension in a rope Motor propulsion Push or pull forces

Mechanical energy and nonconservative forces

• Wnc = $\Delta E_k + \Delta E_p$ • ($E_{kf} - E_{ki}$) + ($E_{pf} - E_{pi}$)

• WORK ENERGY THEOREM: work done by non-conservative forces acting on an object is equal to the objects change in mechanical energy(**frictional force**)

$$\bullet W_{nc} = \Delta E_M$$

Thabita, a cyclist, free-wheels (without pedaling) at a constant speed of $10 \text{ m} \cdot \text{s}^{-1}$ on a horizontal level road. She reaches the bottom of a ramp (incline position A) with a height of 1.2 m and a length of 8 m, as shown in the figure. While she free-wheels up the ramp, she experiences a frictional force of 18 N. The total mass of Thabita and her bicycle is 55 kg.

Law of conservation of mechanical energy

- Energy cannot be created or destroyed. Energy can only be converted from 1 form to another. Total energy of the isolated system is always conserved.
- If conservative forces are present = mechanical energy is conserved

• Example 2

- A 2 kg metal ball is suspended from a rope as a pendulum. If it is released from point A and swings down to the point B (the bottom of its arc):
- calculate the velocity of the ball at point B.

• Example 3

• A mountain climber who is climbing a mountain in the Drakensberg during winter, by mistake drops her water bottle which then slides 100 m down the side of a steep icy slope to a point which is 10 m lower than the climber's position. The mass of the climber is 60 kg and her water bottle has a mass of 500 g.

• If the bottle starts from rest, how fast is it travelling by the time it reaches the bottom of the slope? (Neglect friction.)

POWER

• Power is the rate of doing work.

• $Power = \frac{work}{time}$

 $\mathbf{O}\boldsymbol{P} = \frac{\boldsymbol{W}}{\Delta t}$

• Power is measured in Watt or Joule per second.

• 1 W = 1 $J.s^{-1}$

• AND second possible formula for constant velocity......P = F vunit W or N.m.s⁻¹